Impacts of fine root turnover on forest NPP and soil C sequestration potential.
نویسندگان
چکیده
Estimates of forest net primary production (NPP) demand accurate estimates of root production and turnover. We assessed root turnover with the use of an isotope tracer in two forest free-air carbon dioxide enrichment experiments. Growth at elevated carbon dioxide did not accelerate root turnover in either the pine or the hardwood forest. Turnover of fine root carbon varied from 1.2 to 9 years, depending on root diameter and dominant tree species. These long turnover times suggest that root production and turnover in forests have been overestimated and that sequestration of anthropogenic atmospheric carbon in forest soils may be lower than currently estimated.
منابع مشابه
Comment on "Impacts of fine root turnover on forest NPP and soil C sequestration potential".
Matamala et al. (1) recently highlighted the importance of estimating mean residence time (MRT) of fine root C for understanding soil C dynamics. Using isotopic signals of C from two CO2 experiments as a tracer, they estimated MRT of C through fine roots that ranged from 1.20 to 6.25 years. They obtained these MRT values by fitting an exponential equation to the C data with a one-pool model tha...
متن کاملResponses of a loblolly pine ecosystem to CO2 enrichment: a mo
(FACE) facilities represents a substantial advance in experimental technology for studying ecosystem responses to elevated CO2. A challenge arising from the application of this technology is the utilization of short-term FACE results for predicting long-term ecosystem responses. This modeling study was designed to explore interactions of various processes on ecosystem productivity at elevated C...
متن کاملCapacity of Forest Carbon Sequestration Driven by Npp Increasing in China
Forest ecosystem could significantly sequestrate some atmospheric CO2 and, therefore, partly mitigate current pressure on global warming. The carbon sequestration capacity of forest ecosystem is determined by both the NPP increase trend and turnover time. In order to estimate the capability of forest C sequestration in China, a carbon turnover model, which bases on NPP increase trend monitored ...
متن کاملForest fine-root production and nitrogen use under elevated CO2: contrasting responses in evergreen and deciduous trees explained by a common principle
Despite the importance of nitrogen (N) limitation of forest carbon (C) sequestration at rising atmospheric CO2 concentration, the mechanisms responsible are not well understood. To elucidate the interactive effects of elevated CO2 (eCO2) and soil N availability on forest productivity and C allocation, we hypothesized that (1) trees maximize fitness by allocating N and C to maximize their net gr...
متن کاملResponses of a loblolly pine ecosystem to CO(2) enrichment: a modeling analysis.
The development of the Free-Air CO(2) Enrichment (FACE) facilities represents a substantial advance in experimental technology for studying ecosystem responses to elevated CO(2). A challenge arising from the application of this technology is the utilization of short-term FACE results for predicting long-term ecosystem responses. This modeling study was designed to explore interactions of variou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Science
دوره 302 5649 شماره
صفحات -
تاریخ انتشار 2003